Drinking Water Microbiology

September 2018

Tommy Šlapokas

Edition Version 1 (2018-11-14)

Editor in chief Hans Lindmark, Head of Biology department, National Food Agency

Responsible for the scheme Tommy Šlapokas, Microbiologist, Biology department, National Food Agency

PT September 2018 is registered as no. 2018/02527 at the National Food Agency, Uppsala

Proficiency testing Drinking water Microbiology September 2018

Accred. no. 1457 Proficiency testing ISO/IEC 17043

Parameters included

Coliform bacteria and *Escherichia coli* with membrane filter method (MF) Coliform bacteria and *Escherichia coli*, (rapid methods with MPN) Suspected thermotolerant coliform bacteria with MF (not assessed) Intestinal enterococci with MF *Pseudomonas aeruginosa* with MF Culturable microorganisms (total count) 3 days incubation at 22±2 °C Culturable microorganisms (total count) 2 days incubation at 36±2 °C

Tommy Šlapokas

Irina Boriak, Linnea Blom, Ramia Molin & Marianne Törnquist

National Food Agency, Biology department, Box 622, SE-751 26 Uppsala, Sweden

Abbreviations and explanations

Microbiological media

CCA	Chromocult Coliform Agar [®] (Merck; EN ISO 9308-1:2014)
Colilert	Colilert [®] Quanti-Tray [®] (IDEXX Inc.; EN ISO 9308-2:2014)
Enteroler	Enterolert [®] Quanti-Tray [®] (IDEXX Inc.)
LES	m-Endo Agar LES (according to SS 028167)
LTTC	m-Lactose TTC Agar with Tergitol (according to EN ISO 9308-1:2000)
m-Ent	m-Enterococcus Agar (Slanetz & Bartley; accord. to EN ISO 7899-2:2000)
m-FC	m-FC Agar (according to SS 028167)
PACN	Pseudomonas Agar base/CN agar (with cetrimide and nalidixic acid; according to EN ISO 16266:2008)
Pseudaler	t Pseudalert [®] Quanti-Tray [®] (IDEXX Inc.; ISO 16266-2:2018)
YEA	Yeast extract Agar (according to EN ISO 6222:1999)

Other abbreviations

MF	Membrane filter (method)
MPN	"Most Probable Number" (quantification based on statistical distributions)
ISO	"International Organization for Standardization" and their standards
EN	European standard from "Comité Européen de Normalisation" (CEN)
NMKL	"Nordisk Metodikkomité for næringsmidler" and their standards
DS, NS, S	SFS, SS National standards from Denmark, Norway, Finland and Sweden

Legend to method comparison tables

- N total number of laboratories that reported methods and numerical results
- n number of results except false results and outliers
- Mv mean value (with outliers and false results *excluded*)
- Med median value (with outliers and false results *included*)
- CV coefficient of variation = relative standard deviation in percentage of the mean, calculated from square root transformed results
- F number of false positive or false negative results
- < number of low outliers
- > number of high outliers
- total number of results for the parameter
- 601 remarkably low result
- 278 remarkably high result or CV or many deviating results

Explanations to histograms with accepted and deviating results

- result without remark
- false negative result
- outlier
- \downarrow 34 average without deviating results
- * result beyond the nearest x-axis limit

Contents

General information on results evaluation	4
Results of the PT round	4
- General outcome	4
- Coliform bacteria (MF)	6
- Suspected thermotolerant coliform bacteria (MF)	8
- Escherichia coli (MF)	9
- Coliform bacteria and E. coli (rapid method, MPN)	12
- Intestinal enterococci (MF)	14
- Pseudomonas aeruginosa (MF)	16
- Culturable microorganisms 22 °C, 3 days	18
- Culturable microorganisms 36 °C, 2 days	20
Outcome of the results and laboratory assessment	22
- General information about reported results	22
- Base for assessment of the performance	22
- Mixed up results and other practical errors	22
- z-scores, box plots and deviating results for each laboratory	22
Test material, quality control and processing of data	26
- Description of the test material	26
- Quality control of the test material	27
- Processing of numerical results	28
References	29
Annex A – All reported results	30
Annex B – Z-scores of the results	34
Annex C – Photo example of colony appearance on some media	38

General information on results evaluation

The proficiency testing program organised by the National Food Agency is accredited against EN ISO/IEC 17043. This standard prescribes that results should be grouped based on the method used. Therefore it is mandatory for participants to inform about method data. Method data where differences are present or could be expected are here reported for each parameter.

The method information gathered is sometimes difficult to interpret. Sometimes there is inconsistency between the standard referred to and the information given regarding various method details. Results from laboratories with ambiguous details are either excluded or placed in the group "Other/Unknown" in the tables, together with results from methods used only by individual laboratories. To obtain an as appropriate evaluation as possible of the results, it is important that used standards and method details are reported.

Outliers and false results are not included in the calculation of mean value and measure of dispersion for the various method groups. The numbers of low and high outliers, as well as false results, are instead explicitly given in tables together with the group means etc. The mean and measure of dispersion are not shown for groups with 4 or fewer results, more than exceptionally when it is specifically mentioned. However, all results are shown in the method histograms when possible.

The histograms and calculation of outliers are described on page 28 under "Processing of numerical results" with further reference to the scheme protocol [1].

Results of the PT round

General outcome

Test items were sent to 94 laboratories, 35 in Sweden, 48 in other Nordic countries (Faeroe Islands, Greenland and Åland included), 2 more from EU, 3 from the rest of Europe and 6 from countries outside Europe. Results were reported from 91 laboratories.

The percentages of false results and outliers are compiled in **table 1**. These deviating results are excluded in most calculations.

Microorganisms and parameters of analyses are also compiled in **table 1**. For the MF analyses the parameters *suspected* coliform bacteria and *suspected* thermotolerant coliform bacteria (shaded in table 1 and table 3), as well as *suspected* intestinal enterococci and *suspected* Pseudomonas aeruginosa on primary media could be reported as well. The results from the parameters "suspected" are only used for interpretations and discussions and are not assessed.

All reported results are compiled in **annex A** and results for each laboratory are also shown on our website after logging in (<u>https://www2.slv.se/absint</u>).

Standardized z-scores for all evaluated results are given in **annex B** and photographs with examples of colony appearance on various media are presented in **annex C**.

Mixture В С Α 4% 2% 3% 0% 3% 0% Percentage of 10% 11% 19% laboratories with 0 deviating results 1 deviating result 78% 83% 87% 2 deviating results >2 deviating results No. of evaluable results 511 516 503 No. of deviating results 23 (5 %) 26 (5 %) 21 (4 %) Microorganisms Escherichia coli Klebsiella pneumoniae Escherichia coli (gas neg.) Klebsiella pneumoniae Enterobacter aerogenes Klebsiella oxytoca Lactobacillus plantarum Enterococcus hirae Enterococcus durans Pseudomonas aeruginosa Burkholderia cepacia Pseudomonas aeruginosa Staphylococcus Staphylococcus capitis saprophyticus Analysis F% X% F% Х% Target org. F% X% Target org. Target org. Coliform bacteria 2 2 E. coli 6 K. pneumoniae 6 E. coli 3 3 (MF)K. pneumoniae E. aerogenes K. oxytoca Susp. thermotolerant K. pneumoniae E. coli E. coli coliform bact. (MF) K. pneumoniae {*E. aerogenes*} E. coli (MF) E. coli $10^{\#}$ E. coli 2 0 {[K. pneumon.]} 3 0 _ {[K. pneumon.]} Coliform bacteria E. coli E. coli 0 0 K. pneumoniae 0 2 0 2 (rapid method) K. pneumoniae E. aerogenes K. oxytoca *E. coli* (rapid meth.) E. coli 2 2 E. coli 4 0 0 _ Intestinal enterococci E. hirae 14 _ 0 3 E. durans 0 7 [L. plantarum] (MF) [S. saprophyt.] Pseudomonas P. aeruginosa P. aeruginosa 0 4 [B. cepacia] 0 4 0 _ aeruginosa (MF) Culturable micro-22 °C L. plantarum 0 5 E. hirae 1 8 K. oxytoca 0 0 organisms (total K. pneumoniae S. saprophyt. E. coli (K. pneumon.) count), 3 days E. aerogenes E. durans (E. coli) (B. cepacia) (P. aeruginosa) (P. aeruginosa) 36 °C L. plantarum Culturable micro-1 8 1 1 1 1 S. capitis K. oxytoca organisms (total E. hirae S. saprophyt. E. coli count), 2 days (K. pneumon.) K. pneumoniae E. durans (E. coli) E. aerogenes (P. aeruginosa) (P. aeruginosa) (B. cepacia)

Table 1 Microorganisms in each mixture and percentages of deviating results (F%: false positive
or false negative, X%: outliers); parameters with grey rows are not assessed

* In total 35 of 91 laboratories (38%) reported at least one deviating result; see also the last note below

- Organism missing or numerical result irrelevant

() The organism contributes with only very few colonies

[] The organism is false positive on the primary growth medium

{ } The organism may give different results depending on method or definition used

There are 6 zero results (10%) that are reckoned as false negative or accepted results dependent on the method used

Coliform bacteria (MF)

In some cases m-Endo Agar LES (LES) has been used although not prescribed in the standard referred to (ISO 9308-1:2000 or ISO 9308-1:2014). These results have been placed in a separate group, "LES, wrong standard".

From the table it is clear that LES was used by more laboratories than other media. The proportion that used CCA has increased even more compared to previous years, while the use of LTTC has ceased completely. This is logical since CCA has replaced LTTC in the latest edition of EN ISO 9308-1 from 2014.

This time there is no clear tendency when comparing LES and CCA. Perhaps there is a somewhat lower average result for CCA in sample C. Lower results for CCA have been seen in several previous rounds.

The relative dispersion (CV) is almost identical between LES and CCA in the various samples.

Madimu	NT			Α						В						С			
Niedium	IN	n	Mv	CV	F	<	>	n	Mv	CV	F	<	>	n	Mv	CV	F	<	>
Total	64	58	24	12	1	1	3	59	447	11	1	1	3	59	4343	12	2	2	0
m-Endo Agar LES	32	31	25	11	0	0	1	30	445	12	1	0	1	30	4614	12	1	1	0
Chromocult Colif. A.	24	21	23	10	0	0	2	22	460	10	0	0	2	23	4148	11	0	0	0
Lactose TTC Agar	0	0	_	_	_	_	_	0	_	_	_	_	_	0	-	_	_	_	_
LES, wrong standard	4	3	_	_	0	1	0	4	_	_	0	0	0	3	_	_	1	0	0
Other/Unknown	4	3	_	_	1	0	0	3	_	_	0	1	0	3	_	_	0	1	0

Sample A

- Two strains of coliform bacteria were included, *Escherichia coli* and *Klebsiella pneumoniae*. Both grow with typical colonies on MF media, with a metallic sheen on LES and bluish and pink, respectively, on CCA at 36±2 °C (see annex C). They are negative when confirmed with the oxidase test.
- The result distribution was good. Five deviating results were present.

Sample B

- Two typical strains of coliform bacteria were included, *Enterobacter aerogenes* and *K. pneumoniae* (other strain than in mixture A). Both grow with typical colonies on MF media at 36±2 °C, with a metallic sheen on LES and pink on CCA. They are oxidase negative when confirmed. The colonies of *E. aerogenes* may sometimes appear more or less reddish on LES.
- The result distribution was good. Five deviating results were present.

Sample C

- Two typical strains of coliform bacteria were present, *E. coli* and *Klebsiella oxytoca*. Both grow with typical colonies on MF media, with a metallic sheen on LES, and bluish and pink, respectively, on CCA at 36±2 °C. They are oxidase negative when confirmed.
- The distribution was fairly good but there appears to be two peaks. There is no good explanation to this tendency, so probably it is just one wide peak that seems to have two peaks by the chosen axis scale and pure accident.
- Four low deviating results were present. Further, there is a tendency to an overrepresentation of other low results as well.

Suspected thermotolerant coliform bacteria (MF)

The parameter is not included in performance assessment since only suspected (not confirmed) colonies are asked for. Therefore, no identification is done of outliers excluded in calculations. The medians are therefore given in the table and histograms as they are more robust than the means.

The only growth medium that for sure has been used this time is m-FC agar. The incubation temperature is 44 or 44.5 °C. For sample B it appears that the results at 44.5 °C are lower than at 44 °C. This is further strengthened by the fact that the mean

No grouping	N			Α					В					С			
No grouping	IN	n	Med	CV	F	< >	n	Med	CV	F	< >	n	Med	CV	F	< 1	>
Total	26	26	21	-	—		26	305	-	—		26	2650	-	-	-	_
44 °C	16	16	21	_	_		16	324	_	_		16	2650	_	_	_	_
44,5 °C	5	5	21	_	_		5	194	_	_		5	2600	_	_	_	_
Other/Unknown	5	5	18	_	_		5	220	_	_		5	3090	_	_	_	_

at 44.5 °C was only 86 cfu/100 ml while it was 318 cfu/100 ml at 44 °C. The group Other/Unknown is probably a mixture of the temperatures.

Sample A

- The strains of *E. coli* and *K. pneumoniae* both appear with blue colonies on m-FC at 44/44.5 °C. The results correspond quite well to those for coliform bacteria. Thus, both strains are included.
- The result distribution was narrow and therefore unusually good.

Sample B

- *K. pneumoniae* was the only thermotolerant coliform bacterium in the sample. The strain of *E. aerogenes* can also grow sometimes but with colonies that not are blue but pale greyish.
- The results are generally lower than those for coliform bacteria at 36 ± 2 °C. Probably, and correctly, mainly the colonies of *K. pneumoniae* were counted.
- Two zero results were obtained.

Sample C

- The strain of *E. coli* appears as a suspected thermotolerant bacterium with blue colonies on m-FC at 44/44.5 °C. The strain of *K. oxytoca* usually doesn't grow at 44 °C.
- The result distribution (average 2078 cfu/100 ml) more resembles the one for *E. coli* than the one for coliform bacteria. However, the results are quite dispersed and may indicate that *K. oxytoca* has, unexpectedly, appeared at times. An incubation temperature lower than 44 °C can then be suspected.
- Four zero results were obtained. A reason may be that some laboratories have performed gas tests as confirmation that in some countries is the rule for thermotolerant coliform bacteria (however, it should not be applied to suspected thermotolerant coliform bacteria). Namely, the strain of *E. coli* is gas negative and would then be excluded from the (suspected) thermotolerant coliform bacteria. The results would then be zero.

Escherichia coli (MF)

To identify and quantify *E. coli* from the primary media LES, LTTC and m-FC, confirmation must be done, irrespectively if the plates are incubated at 36 ± 2 °C or at 44/44.5 °C. Depending on the method, test of either indole production or β -glucuronidase activity of oxidase negative presumptive colonies is used as necessary confirmation. Violet to blue colonies on CCA means positive β -glucuronidase activity and is registered as confirmed *E. coli*.

The primary growth media CCA, LES as well as LTTC are used at 36 ± 2 °C and LTTC or m-FC at 44/44.5 °C. The results are here separated in groups based on the used standard. For the standards from the Nordic countries (SS, SFS, NS) the majority of the results are from 36 ± 2 °C but some also from 44/44.5 °C. The results are additionally grouped based on reported incubation temperature.

Groups based on media with the incubation stated to 36 ± 2 °C are shown in a separate table.

There is no clear difference in results in relation to the incubation temperature. This time there is even no indication of lower results with Norwegian standard (NS 4792) that sometimes has been seen in previous rounds. Instead there might be an indication that Swedish standard has given higher results in sample C. In the table 6 false negative results are stated for sample C. However, none of these are by use of ISO 9308-1:2014 with CCA. Some of these zero results may, however, be acceptable, see below under Sample C.

Origin & Stondard	NI			Α						В						С			
Origin & Standard	IN	n	Mv	CV	F	<	$^{<}$	n	Mv	CV	F	<	>	n	Mv	CV	F	<	>
Total	63	61	12	17	1	0	0	61	0	_	2	-	-	56	3028	14	6	0	0
<u>Colony origin</u>																			
36 ± 2 °C	42	41	11	16	0	0	0	41	0	_	1	_	_	40	2969	14	1	0	0
44/44.5 °C	10	10	12	16	0	0	0	10	0	_	0	_	_	8	3288	14	2	0	0
36 ± 2 & 44/44.5 °C	9	8	13	22	1	0	0	8	0	_	1	_	_	6	3413	10	3	0	0
Other/Unknown	2	2	_	-	0	0	0	2	0	_	0	_	-	2	-	_	0	0	0
<u>Standard</u>																			
ISO 9308-1:2000	3	3	13	30	0	0	0	2	0	_	1	_	_	2	3009	15	1	0	0
ISO 9308-1:2014	24	23	11	16	0	0	0	23	0	_	1	_	_	23	3003	14	0	0	0
SS 028167	11	11	11	11	0	0	0	11	0	_	0	_	_	11	3492	10	0	0	0
SFS 4088	14	14	12	17	0	0	0	14	0	_	0	_	_	13	2926	13	1	0	0
NS 4792	3	3	_	_	0	0	0	3	0	_	0	_	_	1	-	-	2	0	0
Other/Unknown	8	7	13	22	1	0	0	8	0	_	0	_	_	6	2272	13	2	0	0

All results

Madimu	N			Α						В						С			
Medium	IN	n	Mv	CV	F	<	$^{<}$	n	Mv	CV	F	<	$^{\prime}$	n	Mv	CV	F	<	<
Total	<i>45</i> [#]	44	11	16	0	0	0	44	0	_	1	_	I	<i>43</i>	2956	14	1	0	0
m-Endo Agar LES	20	20	12	16	6	0	0	20	0	-	0	_	Ι	19	2984	14	1	0	0
Lactose TTC Agar	0	0	_	_	_	_	_	0	_	_	_	_	_	0	-	_	_	_	_
CCA	24	23	10	16	2	0	0	23	0	_	1	_	_	23	2954	15	0	0	0
Other/Unknown	1	1	_	_	0	0	0	1	0	-	0	_	_	1	-	-	0	0	0

Results for E. coli from the analysis of coliform bacteria MF at 36±2 °C

Compare table above – some more laboratories performed the analysis of *E. coli* at 36±2 °C but not of coliform bacteria

Sample A

- One typical *E. coli* strain was included. It shows β -glucuronidase activity, indole production and also gas production when fermenting lactose. It grows with typical colonies on the various primary growth media.
- The average 12 cfu/100 ml was the same as for the rapid method.
- The results were highly accumulated and, thus, showed a very good distribution. One false negative result was present.

Sample B

- No *E. coli* was included but two false positive results were obtained.

Sample C

- One strain of *E. coli* with normal β -glucuronidase activity and indole production but no gas production from lactose fermentation was present in the mixture. It appears with typical colonies on the various primary growth media, see annex C.
- Six zero results were recorded among the 62 results. Since the average is high, the zero results cannot be obtained accidentally. There was no zero result with ISO 9308-1:2014 using CCA. They were instead obtained from methods using lactose fermentation. If gas production is a crucial criterion to be judged as *E. coli*, these zero results have to be reckoned as acceptable although they are here stated as false negative results. In many countries, e.g. Sweden, there is no requirement for gas test. Zero results under such circumstances, as well as from CCA, must be seen as strict false negative values. All 6 laboratories with zero results have stated the use of a gas test, which supports the assumption above. Incubation at 44.5 °C may alternatively be the cause to some zero results.
- The distribution was good except the 6 zero results, which are handled separately. Beside these there were no more deviating results.

Coliform bacteria & E. coli (rapid methods, MPN)

The rapid methods used for both these parameters were exclusively Colilert[®] Quanti-Tray[®] from the manufacturer Idexx Inc. with incubation at 35, 36 or 37 °C. Out of the 60 laboratories that reported Colilert some used trays with 51 wells, while others used trays with 97 wells. The laboratories often analysed both diluted and undiluted samples. Yellow wells (ONPG positive; with β -galactosidase activity) are interpreted as coliform bacteria and yellow wells also exhibiting fluorescence (MUG positive; with β -glucuronidase activity) are interpreted as *E. coli*.

The maximum incubation time is a bit vague for some laboratories. Six laboratories have incubated up to 24 hours. One of these has reported 23-24 hours while all the others reported just 24 hours, out of which 3 stated the use of "Colilert 24 hours". The average results for this group were deviating for coliform bacteria, in two cases higher and in one case lower than for other groups. Despite only 4 results, the average and CV for "Colilert 24 hours" in sample C are shown as comparison. The differences may accidentally be an effect of the few results. No differences were seen between the groups that incubated up to 20 or 22 hours.

Sample A

- The strains of *E. coli* and *K. pneumoniae* grow and possess β -galactosidase. They are thus detected as coliform bacteria by methods based on the activity of this enzyme (ONPG positive), e.g. Colilert®-18/24 Quanti-Tray® where ONPG is a substrate.

Inouhation time	N			Α						B						С			
incudation time	IN	n	Mv	CV	F	<	$^{\prime}$	n	Mv	CV	F	<	$^{\prime}$	n	Mv	CV	F	<	>
Total, Rapid meth.	60	59	23	13	0	0	0	57	517	10	0	0	1	54	4916	12	0	1	0
18 to 20 hours	30	30	23	12	0	0	0	29	525	11	0	0	0	28	4623	10	0	0	0
18 to 22 hours	23	23	23	14	0	0	0	22	523	10	0	0	1	22	5188	13	0	0	0
24 hours	6	6	27	12	0	0	0	6	464	12	0	0	0	4	5535	10	0	0	0
Other	0	0	_	_	_	_	_	0	_	_	_	_	_	0	-	-	_	_	_
Wrong method	1	1	_	_	0	0	0	1	-	-	0	0	0	0	-	_	0	1	0

Coliform bacteria, Rapid method with MPN

E. coli, Rapid method with MPN

Inauhatian tima	N			Α						В						С			
incudation time	IN	n	Mv	CV	F	<	$^{\prime}$	n	Mv	CV	F	<	>	n	Mv	CV	F	<	$^{\prime}$
Total, Rapid meth.	60	58	12	15	1	0	0	59	0	-	1	-	-	55	3247	11	2	0	0
18 to 20 hours	30	30	12	16	0	0	0	30	0	-	0	-	-	28	3099	10	1	0	0
18 to 22 hours	23	23	12	14	0	0	0	23	0	_	0	_	_	22	3417	12	0	0	0
24 hours	6	5	13	17	1	0	0	6	0	_	0	_	_	5	3343	13	0	0	0
Other	0	0	_	_	_	_	_	0	_	-	_	_	_	0	-	-	_	_	_
Wrong method	1	1	_	. –	0	0	0	0	_	_	1	_	-	0	_	_	1	0	0

- Only the strain of *E. coli* possesses the enzyme β -glucuronidase and is also detected as *E. coli*. One false negative result for *E. coli* was present.
- The averages for this sample were about the same as for the MF methods.

Sample B

- There was no *E. coli* in the mixture. Instead there were two other coliform bacteria present, *K. pneumoniae* and *E. aerogenes*. They possess β -galactosidase but not β -glucuronidase and are thus detected as coliform bacteria.
- One high outlier was reported for coliform bacteria and one false positive result for *E. coli* when "wrong method" (tube method based on fermentation of lactose) was used. The latter result may be mixed up with that for sample C.
- The average for coliform bacteria was somewhat higher than for the MF methods.

Sample C

- The coliform bacteria *E. coli* and *K. oxytoca* were included. Both of them possess the enzyme β -galactosidase and are detected as coliform bacteria.
- Only the strain of *E. coli* has the enzyme β -glucuronidase and is detected as *E. coli*.
- One low outlier was present for coliform bacteria and two false negative results for *E. coli*. One of these may be due to mixing up with sample B.
- The averages were somewhat higher than for the MF methods.

Intestinal enterococci (MF)

The method used for intestinal enterococci is almost exclusively EN ISO 7899-2:2000. Only in 4 cases has another method reference, like national standards or manufacturers instruction been stated. m-Enterococcus Agar (Slanetz & Bartley), here designated m-Ent, has been used as primary medium except in 3 cases. Out of these, the method Enterolert[®]-DW (Idexx Inc.) has been used in one case and Enterolert[®]-E (Idexx Inc.) in another, in spite of not being MF methods. In both these the incubation temperature was 41 °C. In the third case, the laboratory used Rapid Enterococcus Agar at 44 °C without confirmation. In all other cases the incubation temperatures were 35, 36 or 37 °C.

Confirmation	N			Α						В						С			
medium	IN	n	Mv	CV	F	<	>	n	Mv	CV	F	<	$^{\prime}$	n	Mv	CV	F	<	>
Total	62	51	0	-	8	_	_	59	737	8	0	0	2	56	1343	8	0	2	2
MF method with conf.	59	48	0	-	8	_	—	56	747	8	0	0	2	54	1335	8	0	2	2
BEA Agar	48	38	0	-	7	_	_	45	758	8	0	0	2	45	1337	8	0	0	2
BE Agar	9	8	0	_	1	_	_	9	691	8	0	0	0	7	1289	9	0	2	0
Other/Unknown	2	2	0	_	0	_	_	2	_	_	0	0	0	2	-	_	0	0	0
MF method, no conf.	1	1	0	_	0	_	_	1	_	_	0	0	0	1	-	_	0	0	0
Rapid method*	2	2	0	_	0	_	_	2	_	_	0	0	0	2	-	_	0	0	0

* Two variants of Enterolert[®] - no confirmation was done

The method for presumptive intestinal enterococci does not differ for the vast majority of the 62 results obtained. Method differences are, therefore, most seen in the confirmation step. Confirmation was performed by all but 3 laboratories. From the table is clear that 81 % was performed with Bile-esculin-azide agar (BEA Agar) as stated in EN ISO 7899-2:2000, 15 % was performed with Bile-esculin agar (BE Agar; without azide) and 3 % by other means. No difference can be seen for BE Agar compared to BEA Agar.

The temperature for confirmation was in 88 % of the laboratories 44 °C, in 7 % less than 44 °C and in 5 % it was 44.5 °C (the numbers are not shown in the table).

Sample A

- No enterococcus strain was included but a strain of *Lactobacillus plantarum* appeared on m-Ent with small light coloured colonies after 2 days. Also the strain of *Staphylococcus saprophyticus* will sometimes grow with small colonies.
- Eight false positive results were reported even though the colonies were small and atypical, and unlike those of intestinal enterococci. However, around 20 laboratories have reported about 5000 suspected intestinal enterococci, thus most of which were excluded after confirmation.

Sample B

- A strain of *Enterococcus hirae* was present. The distribution of the results was good with very small dispersion (see page 28). The colonies are brown-red on m-Ent and are normally confirmed without problem.
- Two incredibly high outliers were obtained.

Sample C

- A strain of *E. durans* was present. The distribution of the results was narrow and good with very small dispersion. The colonies are light brown-red on m-Ent and are normally confirmed without problem.
- Two high and two low deviating results were present.

Pseudomonas aeruginosa (MF)

EN ISO 16266:2008 with or without modification was used by 46 out of the 57 laboratories that reported results. Some laboratories have as reference stated the identical, but since long time withdrawn, CEN standard EN 12780:2002 with or without modification. Pseudalert[®] (Idexx Inc.) has been used in 6 cases. Incubation has in 4 cases with Pseudalert[®] been done at 38 °C and in 2 cases at 37 °C. For the MF methods the incubation has been done at 35, 36 or 37 °C.

Because unhealthy substances like mercury are included, many laboratories have replaced the confirmation tests in the standard, by some other method. The major modification of the method, therefore, concerns the confirmation. When only typical yellow-green to blue-green colonies are present, no confirmation needs to be done. In those cases there is no principal difference between what is counted whether "mod." is stated for the method or not. The colonies in sample A were typical, meaning no confirmation was necessary. Those in sample C were a bit atypical as being brown-green, and the decision if confirmation would be necessary probably varied. If confirmation was done or not is therefore obscure. There is no difference between "modified" or not modified in the table.

The 5-6 results for "wrong method" in the table were obtained by use of Pseudalert[®]. Both for sample A and C the averages by that method were much lower than by the MF methods, while the dispersion (CV) at the same time was larger.

Standard/Method	NT			Α						В						С			
	IN	n	Mv	CV	F	<	$^{\prime}$	n	Mv	CV	F	<	$^{\prime}$	n	Mv	CV	F	<	>
Total	57	54	17	17	0	2	0	55	0	_	0	_		52	167	23	2	0	0
Membrane filtration	51	- 49	18	16	0	1	0	- 49	0	_	0	_	Ι	47	177	- 19	1	0	0
ISO 16266 ^a	29	28	17	16	0	0	0	28	0	_	0	_	I	25	172	19	1	0	0
ISO 16266, mod. ^b	17	17	19	17	0	0	0	16	0	_	0	_	_	17	181	17	0	0	0
Other	5	4	_	-	0	1	0	5	0	_	0	_	_	5	194	29	0	0	0
Wrong method, Pseudalert [®] , MPN	6	5	11	24	0	1	0	6	0	_	0	_	-	5	87	52	1	0	0

a Modification not stated for confirmation; includes EN 12780:2002

b Alternative confirmation performed, e.g. Maldi-TOF, API, phenanthroline test; includes EN 12780:2002, mod.

Sample A

- One strain of *Pseudomonas aeruginosa* with typical blue-green colonies on PACN was included. The colonies showed a clear fluorescence under UV light. No confirmation was necessary according to the standard.
- The results were well accumulated and the distribution therefore good with a small dispersion (see page. 28).
- Two low outliers were present.

Sample B

- There was no *P. aeruginosa* in the sample but instead transparent colonies of *Burkholderia cepacia*. Some laboratories reported them as suspected *P. aeruginosa*. Confirmation has probably then been done but with negative outcome.
- No false positive results were reported.

Sample C

- One strain of *P. aeruginosa* with brown-green colonies on PACN was included in the sample. The brown colour was best seen from the bottom of the agar plates. The colonies showed clear fluorescence under UV light. Normally, no confirmation was necessary as there were a greenish hue, although the brownish colour could lead to confirmation "in case of".
- The results were quite well accumulated, although there was a sort of tail with low results. The total dispersion was medium-sized.
- Two false negative results were present.

Culturable microorganisms 22 °C, 3 days

Eighty-one out of the 83 laboratories performing the analysis reported EN ISO 6222:1999 as method, which prescribes the use of Yeast extract Agar. Seven laboratories used Plate Count Agar in combination with this standard. Two laboratories used Standard Methods [5] together with Yeast extract Agar, and in one of these cases by the spread plate technique. They are included in the group "Other method" in the table. Tree more laboratories have reported the use of spread plate technique together with EN ISO 6222:1999, out of which two had an extra layer of agar topmost.

Comparisons of method variants are relevant to discuss only in connection to EN ISO 6222:1999. Results are given for culture media and magnification for reading.

There are no differences between any samples in relation to magnification at reading. For sample A, and especially for sample C, the average results were a bit lower with PCA compared to YEA.

Choup of populta	N			Α						В						С			
Group of results	IN	n	Mv	CV	F	<	<	n	Mv	CV	F	<	>	n	Mv	CV	F	<	>
Total, all results	83	78	54	7	0	3	1	75	13	11	1	1	6	82	66	9	0	0	0
EN ISO 6222	81	77	54	7	0	2	1	74	13	11	1	1	5	80	66	9	0	0	0
<u>Medium</u>																			
Yeast extract Agar	74	71	54	7	0	1	1	68	13	11	1	0	5	73	68	8	0	0	0
Plate Count Agar	7	6	49	6	0	1	0	6	11	9	0	1	0	7	52	10	0	0	0
Other/Unknown	0	0	_	-	_	_	—	-	_	_	_	_	_	_	-	-	_	_	_
<u>Magnification</u>																			
None	22	20	57	7	0	1	0	18	14	13	1	1	2	21	62	9	0	0	0
1,1–4,9×	27	27	54	7	0	0	0	27	13	11	0	0	0	27	67	11	0	0	0
5–11,9×	31	29	52	7	0	1	1	28	13	10	0	0	3	31	68	7	0	0	0
> 12×	1	1	_	_	0	0	0	1	-	_	0	0	0	1	_	-	0	0	0
Other/unknown	0	0	_	-	—	_	—	0	_	-	—	_	—	0	_	-	—	—	—
Other method	2	1	-	_	0	1	0	1	_	_	0	0	1	2	_	_	0	0	0

Sample A

- All strains in the sample appeared as culturable microorganisms. No particular problems seemed to be present.
- The distribution of the results was good with a very small dispersion (see page 28).
- One high outlier and 3 low outliers were obtained.

Sample B

- All the strains except *Staphylococcus capitis* will normally grow as culturable microorganisms, in one case only with <1 cfu/ml.
- The distribution of the results was normal except for the 6 high deviating results. However, the dispersion was still small for the other results.
- One false negative result, one low outlier and 5 high outliers were present.
- The majority of the high outliers were probably a result of a too high incubation temperature allowing the growth also of *S. capitis*. That strain grows well in the corresponding analysis at 36±2 °C. At what temperature it starts to become visible is not checked.

Sample C

- All the strains in the sample appeared as culturable microorganisms. No particular problems seemed to be present.
- The distribution of the results was good with a small to very small dispersion (see page 28).
- No deviating results were present.

Culturable microorganisms 36 °C, 2 days

Sixty-five of the 71 laboratories have stated the use of EN ISO 6222:1999. Three of the laboratories in the group "Other method" in the table have stated Standard Methods [5], two have stated Swiss standard while the last didn't state any standard. Eight laboratories have reported Plate Count Agar, out of which 4 in combination with EN ISO 6222:1999, 2 in combination with Standard Methods and 2 together with Swiss standard. The values for PCA together with EN ISO 6222:1999 are shown as comparison in the table, despite only 4 values per sample. The results for PCA in combination with EN ISO 6222:1999 are given as comparison despite only 4 results per sample.

As for the analysis at 22 °C, comparisons of method variants are relevant to discuss only when EN ISO 6222:1999 was used. Also here, the results are presented in relation to culture media and magnification for reading.

No clear differences between methods could be seen in any case. For sample B and C the average results for "Other method" are somewhat lower. But it is not possible to relate that to a particular method.

Cuerne of mean-14a	NI			Α						В						С			
Group of results	IN	n	Mv	CV	F	<	$^{<}$	n	Mv	CV	F	<	>	n	Mv	CV	F	<	$^{<}$
Total, all results	71	67	50	9	1	0	1	64	49	10	1	3	3	68	62	6	1	0	1
EN ISO 6222	65	62	50	9	1	0	1	58	<i>49</i>	10	1	3	3	63	63	6	1	0	0
<u>Medium</u>																			
Yeast extract Agar	61	58	50	9	1	0	1	54	50	10	1	3	3	59	63	7	1	0	0
Plate Count Agar	4	4	50	10	0	0	0	4	46	13	0	0	0	4	59	4	0	0	0
Other/Unknown	0	0	_	-	_	_	_	0	_	_	_	_	-	0	_	-	_	_	_
Magnification																			
None	21	20	50	11	0	0	0	18	47	11	0	1	2	20	61	7	0	0	0
1,1–4,9×	24	23	51	8	1	0	0	21	51	8	1	2	0	23	61	7	1	0	0
5–11,9×	20	19	49	7	0	0	1	19	49	11	0	0	1	20	65	4	0	0	0
> 12×	0	0	_	-	_	_	_	-	_	_	_	_	—	_	_	_	_	_	_
Other/Unknown	0	0	_	-	_	_	_	-	_	-	_	_	_	-	_	_	_	_	_
Other method	6	5	49	13	0	0	0	6	44	13	0	0	0	5	57	4	0	0	1

Sample A

- All strains in the sample appeared as culturable microorganisms at 36±2 °C. No particular problems seemed to be present.
- The distribution of the results was good with a very small to small dispersion (see page 28).
- One high outlier was present.

Sample B

- All strains in the sample will grow at 36±2 °C. The considerably higher average here compared to at 22 °C is caused by the strain of *S. capitis* that grows at 36 but not at 22 °C and is present in highest concentration.
- The distribution shows, as in previous rounds (September round 2015, September round 2016 and September 2017) unexpectedly many low results. The reason for them is unclear. Possibly, some of the *S. capitis* colonies may not grow enough to be reckoned as colonies under the magnification used.
- The lowest results were identified as deviating ones. Yet the relative dispersion of the accepted results was small.
- One false negative result, 3 low and 3 high outliers were identified.

Sample C

- All strains in the sample appeared as culturable microorganisms at 36±2 °C. No particular problems seemed to be present.
- The distribution of the results was good with a very small dispersion (see page 28).
- One false negative result and one high outlier were present.

Outcome of the results and laboratory assessment

General information about reported results

The distributions of results for the respective analysis are shown in histograms. A box plot (see below) gives a summarizing image of all the results of a laboratory, except false results. The number of false results and outliers are given below the plot for each laboratory. These values are highlighted with bold text on yellow background in annex A. The limit values for lowest and highest accepted results are given for each analysis in the summarizing lines at the end of annex A, together with the measurement uncertainty of the mean.

Base for assessment of the performance

The laboratories are not grouped or ranked in relation to their performances. The assessment is basically a clear indication of the numbers of false results and outliers.

Generally, the laboratories that did not report their results in due time, have to compare their results themselves with all other laboratory's by looking in tables, figures and annex A.

Mixed up results and other practical errors

Thirteen laboratories obtained more than one deviating result. When whole samples seem to have been mixed up, the corresponding sample numbers are hatched in annex A. No laboratory seems to have mixed up samples. Instead, one laboratory may have mixed up two results for one parameter. A couple of laboratories can be suspected to have forgotten to recalculate some counts to the volume asked for. Others have reported unreasonably high results for certain analyses.

z-scores, box plots and deviating results for each laboratory

The square-root transformed results of the laboratories are calculated to standard scores, z-scores, to become comparable between analyses. They are given in annex B and used for the box plots. They are given explicitly to facilitate the follow-up process for laboratories using z-scores in control charts etc. For interpretation and calculation of z-scores, see the scheme protocol [1] and the explanation to annex A.

The z-scores are the base for the box plots. The range of the z-scores for each laboratory is shown by a rectangle (box) and lines and/or circles above and beneath the box. The smaller the range from lowest to highest value is in the plot and the more centred around zero the values are, the better is the agreement between the laboratory's results and the means from all laboratories.

Box plots and numbers of deviating results for each participating laboratory

- *z*-scores are calculated from the formula z = (x mv) / s (see annex A).
- A correct result "zero" will get z = 0 when there is no target organism present.
- False results do not generate z-scores and are not included in 'No. of results'.
- The outliers are included in the plots after recalculation to standardised values with the same standard deviation (s) as the rest of the results for each parameter.
- *z*-scores > +4 and < -4 have in the plots been set to +4 and -4, respectively.
- The numbers of false positives and false negatives are given in the table under the plots together with the numbers of outliers.
- The horizontal red line in each box indicates the median for the laboratory.
- The box includes 25 % of the results above and below the median. The lines protruding from the box and/or the circles embrace the remaining 50 % of the results, outliers excluded.
- A circle is for technical reasons shown when a result is to a certain degree deviating* from the rest. This alone does not mean it is an outlier.
- The background is divided into coloured fields in order to simplify localization of the laboratory results.

^{* &}lt; [smallest value of the box - $1.5 \times$ (largest value of the box - smallest value of the box)] or > [largest value of the box + $1.5 \times$ (largest value of the box - smallest value of the box)]

Test material, quality controls and processing of data

Description of the test material

This round comprised three test items with different microorganism mixtures. The test material was manufactured and freeze-dried in portions of 0.5 ml in small vials, according to the description by Peterz and Steneryd [2]. The simulated water samples were prepared by dissolving the content of the vials in 800 ml of sterile diluent. The composition and approximate concentrations in each mixture obtained at the National Food Agency are listed in table 2. The participating laboratories were assigned to perform the analyses according to the methods routinely used by them.

The test material is primarily suited to the EN ISO methods for analyses of drinking water referred to in the European Drinking water directive [4] and its updates [6]. Alternative methods and other standards may usually be used without any problem.

Mixture ¹	Microorganisms	Strain co	llection no.	cfu/100 ml ²
		SLV (own)	Reference ³	
А	Escherichia coli	084	_	13
	Klebsiella pneumoniae	186	CCUG 45102	12
	Lactobacillus plantarum	475	CCUG 30503	8000^{4}
	Pseudomonas aeruginosa	453	CCUG 551	28
	Staphylococcus saprophyticus	013	CCUG 45100	?5
В	Klebsiella pneumoniae	537	_	360
	Enterobacter aerogenes	099	ATCC 13 048	200
	Enterococcus hirae	536	CCUG 46536	760
	Burkholderia cepacia	042	_	24
	Staphylococcus capitis	463	CCUG 35173	43 *
С	Escherichia coli	532	CCUG 48891	3400
	Klebsiella oxytoca	089	CCUG 43602	2100
	Enterococcus durans	078	CCUG 44816	1300
	Pseudomonas aeruginosa	569	_	300

Table 2 Microorganisms present in the mixtures

1 The links between the mixtures and the randomised sample numbers are shown in annex A; the analyses were performed at the times given in note 1 of table 3

2 cfu = colony forming units

3 Origin or culture collection number; ATCC: American Type Culture Collection; CCUG: Culture Collection University of Gothenburg, Sweden

4 The result is from m-Enterococccus agar and comprises both L. plantarum and S. saprophyticus

⁵ See note 4

^{*} Indicates cfu per ml

Quality control of the test material

It is essential to have a homogeneous mixture and a uniform volume in all vials in order to allow comparison of all freeze-dried test items derived from one mixture. The volume was checked by weighing 2 to 3 % of the number of vials produced of the mixtures. The largest differences between vials were 6, 6 and 2 mg in mixture A, B and C, respectively. The largest accepted difference is 15 mg (3 %).

Table 3 presents the results from the organizer in the form of concentration means (cfu) and the measures (I_2 and T; see reference 1) used to assess homogeneity from duplicate analyses of 10 vials from each mixture the first time the mixture is used or duplicate analyses from 5 vials in a stability check when a mixture is used a second time. The results relate to the volume that was used for counting the colonies. The

Analysis parameter				Mi	xtur	e			
Method standard for analysis		Α			B			\mathbf{C}^{2}	
	cfu	I ₂	Т	cfu	I_2	Т	cfu	I_2	Т
Coliform bacteria (MF) <i>m-Endo Agar LES according to SS 028167</i>	26	1.1	1.5	56°	1.1	1.3	56 ^d	1.1	1.3
Suspected thermotolerant colif. bact. (MF) [*] <i>m</i> -FC Agar, 44 °C according to SS 028167	26 ^a	- ^a	1.5	32 ^c	1.1	1.4	33 ^d	1.1	1.4
Escherichia coli (MF) m-Endo Agar LES according to SS 028167	13	1.1	1.8	_	_	_	34 ^d	1.9	1.6
Intestinal enterococci (MF) <i>m-Enterococcus Agar acc. to SS-EN ISO 7899-2:2000</i>	82 ^b	_ ^b	2.0	76°	1.0	1.3	132 °	1.7	1.2
Pseudomonas aeruginosa (MF) Pseudomonas Agar base with cetrimide and nalidixic acid according to SS-EN ISO 16266:2008	28	0.7	1.4	—	_	_	30 °	0.6	1.3
Culturable microorg., 2d 37 °C (pour plate) Yeast extract Agar according to SS-EN ISO 6222:1999	50	1.3	1.4	53	1.3	1.4	71	1.1	1.3
Culturable microorg., 3d 22 °C (pour plate) Yeast extract Agar according to SS-EN ISO 6222:1999	58	1.4	1.4	14	0.7	1.6	74	0.2	1.1

Table 3 Contents (cfu) and measures of homogeneity (I_2 and T, see reference 1) in relevant sample volumes for the various parameters in the mixtures ¹

1 n=10 vials analysed in duplicate, normally100 ml for MF and 1 ml for pour plate, 21, 15 and 13 weeks ahead of the testing round start for the mixtures A, B and C, respectively

2 The parameter is not evaluated in the round as it consists of suspected colonies only

a Only 5 single analyses was performed – thus no value for I₂, the strains were the same as on LES

- c Determined for the volume 10 ml
- d Determined for the volume 1 ml

- No target organism and thus no analysis

b A presumptive false positive result due to the counting of *L. plantarum* and *S. saprophyticus*; only 3 single analyses was performed – thus no value for I_2

simultaneously higher than 2. According to that criterion, all mixtures were homogeneous regarding the assessed parameters that were about to be analysed.

Processing of numerical results

Most histograms have "tails" in either or both directions, due to values that do not belong to a normal distribution. Calculations are performed after square root transformations of the results that give better normal distributions by decreasing the significance of the high deviating results. Very deviating values are still present in most analyses and are identified as outliers (black bars). False negative results are presented with white bars in the histograms.

Outliers are identified by use of Grubbs' test according to a modification by Kelly [3]. A level of 1 % is set as the risk to incorrectly assess a result as being an outlier. Although the method is objective, there is a prerequisite that the results are normally distributed in order to obtain correct outliers at the 1 % level. A zero result that is a low outlier is considered a false negative result. In special situations, e.g. when many zero results are reported and in some borderline cases, a few subjective adjustments are made in order to set the right limits based on the knowledge of the mixture's content. False results and outliers are not included in the calculations of mean values and measures of distribution.

The coefficient of variation (CV) for square root transformed results is given as a measure of dispersion. When the dispersion is <10 % it is regarded as very small, 10-20 % as small, 20-30 % as medium, 30-40 % as large and >40 % as very large.

The calculation of uncertainty of measurement of the assigned value is described in the scheme protocol [1]. The assigned value for an analysis is calculated from the square root transformed results and is the square root of "Mean" in Annex A. It is there denoted as mv. Hence, also the measurement uncertainty will be expressed as a square root value. The standard uncertainty of measurement (u) correspond to the standard deviation of the assigned value (s) divided by the number of results square-root transformed, i.e.: $u = s/\sqrt{n_{mv}}$ where n_{mv} is the number of results in annex A, except the deviating ones. Here is the relative uncertainty (u_{rel}) used and expressed as per cent after division by the mean value mv and multiplication by 100.

More about result processing and recommendations on follow-up work are given in the scheme protocol [1]. A PDF of that document is available on the website <u>https://www2.slv.se/absint</u>.

References

- 1. Anonymous 2017, corrected version 2018. Scheme protocol, Microbiology, Drinking water & Food, 5th ed. National Food Agency, Sweden.
- 2. Peterz, M., Steneryd, A.-C. 1993. Freeze-dried mixed cultures as reference samples in quantitative and qualitative microbiological examinations of food. J. Appl. Bacteriol. 74:143-148.
- 3. Kelly, K. 1990. Outlier detection in collaborative studies. J. Assoc. Off. Chem. 73:58-64.
- 4. Anonymous 1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities. 5.12.98, L 330/32-54 (*national translations available*).
- 5. Standard Methods for the Examination of Water and Wastewater, <u>http://www.standardmethods.org/</u>
- 6. Anonymous 2015. Commission Directive (EU) 2015/1787 of 6 October 2015 amending Annexes II and III to Council Directive 98/83/EC on the quality of water intended for human consumption. Official Journal of the European Union. 7.10.2015, L 260/6-17 (*national translations available*).

Annex A Results of the participants, cfu/100 ml (see also the note). Susp. = suspected on membrane filter before confirmation. Results given as <1, <2, <10 and <100 are treated as zero. The fields with other results given as < 'value' and results given as > 'value' are yellow, and those results are not included in calculations or evaluations. This is also valid for results in shaded columns. A hyphen indicate that no result has been reported. Figures written in bold in yellow fields indicate outliers, false positive and false negative results. Underlined zero values indicate results characterized as 'False negative ?'. Crossed out sample numbers in a row indicate that the samples probably are mixed up. False positive and false negative

Lab no.	Sample	Suspec	ted col	iform E)	Coliforn	n bacter	ia (MF)	Susp. th	nermoto m bact	lerant	E.	coli (M	F)	Colifo	orm bac	teria	E. coli	("rapid'	' MPN)
	ABC	A	B	<u>с</u>	Α	в	С	A	B	(WII ⁻)	А	в	С	A	B	C	Α	в	С
1131	1 2 3	-			-	-	-	-		-	-		-	18	488	6131	6	<1	3873
1132	3 1 2	-	-	-	-	-	-	-	-	-	-	-	-	29	443	4106	21	0	3076
1237	213	- 21	- 370	3300	33	450 370	3800	-	-	-	12	<1 0	3000	15 24	480	>2420	8	<1	>2420
1290	3 1 2	-	- 370	- 3300	27	4680	4409	-	-	-	13	<1	3000	- 24	- 010	4000	-	-	2000 -
1545	2 1 3	26	400	5700	20	400	5700	12	220	2500	9	0	2500	10	430	4800	6	0	3500
1594	1 2 3	20	490	5300	20	490	5300	15	350	2400	10	0	3600	27	620	4700	12	0	3900
1753	132	- 22	550	4200	22	550 480	4200 5100	- 21	303	2870	9 12	0	3400	26	548 613	4082 6130	15	0	2738 5170
1868	1 3 2	28	527	4900	28	527	4900	-	-	-	18	0	4900	25	795	4350	10	0	4350
1970	3 1 2	33	370	5100	33	370	5100	33	370	5100	21	0	3700	-	-	-	-	-	-
2050	231	-	-	-	28	620	6300 5000	-	-	-	13	0	4800	23	499	4722	14	0	3703
2300	1 2 3 3 1 2	20	480	5000	20	480	5000	-	-	-	- 12	-	3600	22	480	5600	9 16	<1	4290 3400
2670	3 2 1	6	420	2390	6	420	2390	6	420	0	6	0	2390	-	-	-	-	-	-
2704	3 1 2	-	-	-	23	<1	5200	-	-	-	12	<1	5200	34	453	5300	12	<1	3600
2745	2 1 3	15	620	4600	15	620	4600	15	620	4600	8	0	4600	-	-	-	-	-	-
3055	3 2 1 3 2 1	-			41	350	- 3400	- 27	220	<100	- 27	<10	<100	17	- 240	30	17	240	<2
3076	1 2 3	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-
3145	2 3 1	-	-	-	-	-	-	-	-	-	-	-	-	31	613	5172	15	0	3448
3155	321	-	-	-	-	-	-	-	-	-	-	-	-	- 19	-	-	-	-	2076
3305	2 3 1	29	530	3000	29	530	3000	-	-	-	15	<1	3000	24	500	5000	12	<1	3600
3533	1 3 2		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3587	3 1 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3730	312	28	800 450	5400 5400	- 20	-	- 5400	21	300	3000	- 10	-	-	- 22	526	-	- 16	-	-
4015	231	- 20	430	- 5400	- 20	430	- 5400	-	-	-	-	-	- 3200	22	1780	5250	9	0	3500
4288	3 1 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4339	1 3 2	28	560	5100	28	560	5100	15	260	3000	15	0	2000	32	440	4900	15	0	2800
4343 4356	312	- 29	- 540	4000	- 29	- 540	4000	- 29	- 210	2000	- 20	-	2400	26 26	687 517	3255	13	0	4611 2419
4459	3 2 1	-	-	-	-	-		-	- 210	- 2000	-	-	-	36	387	>2420	<0	<0	2420
4723	2 1 3	-	-	-	-	-	-	-	-	-	-	-	-	24	461	6488	10	0	4106
4817	231	-	-	-	18	260	4000	18	160	3090	-	-	-	-	-	-	-	-	-
4889 5018	2 1 3 2 1 3	- 35	530	- 5360	23	530	3900 2144	-	-	-	18	0	2600	19	350 548	3900 4840	14	0	2400
5094	3 1 2	-	-	-	21	360	1710	-	-	-	6	0	1200	-	-	-	-	-	-
5220	3 1 2	-	-	-	-	-	-	-	-	-	-	-	-	22	517	> 2419	11	0	> 2419
5352 5447	312	-			24	390	5000	-	-	-	14 12	0	3000	-	-	-	-		-
5494	213	-			0	10	4400	-	-	-	- 12	-	- 1300	-	-	-	-	-	-
5612	3 2 1	26	480	4900	26	480	0	13	194	2600	13	0	0	19	340	5300	11	0	3600
5858	1 2 3	-	-	-	-	-	-	-	-	-	-	-	-	25	630	3640	13	0	2710
5950 6175	3 2 1 3 1 2	- 29	536	3600	29	536	3600	25	355	2700	10	<1	2700	19	5/9	>2419	14	<1	>2419
6182	1 2 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
6233	2 1 3	16	410	4600	16	410	4600	-	-	-	8	0	3600	30	541	4106	19	0	3076
6253	1 3 2	-	-	-	- 20	-	-	-	-	-	-	-	-	20	340	7000	11	0	4200
6456	3 2 1 1 2 3	-	-		30 24	460	3900 4900	-	-	-	7	0	2500 3300	- 14	- 670	5900	- 8	- 0	2700
6563	3 2 1	25	191	5500	25	191	5500	25	191	5500	15	<1	4400	25	532	6300	12	<1	3773
6686	3 2 1	-	-	-	-	-	-	-	-	-	-	-	-	27.1	450	>2000	15	<1	<1
6801 7101	213	17	2400	44	17	2400	18	-	-	-	0	0	0	-	-	-	-	-	-
7248	1 2 3	130	290	6400	130	290	6400	20	360	2100	9	0	3200	26	613	5300	16	0	3260
7282	1 2 3	-	-	-	-	-	-	-	-	-	15	0	2865	-	-	-	-	-	-
7330	321	-	-	-	-	-	-	-	-	-	9	0	2153	-	-	-	-	-	-
7442	132 321	-			25 35	532 490	4328	-	-	-	12	<1	2982	- 24	637	3330	- 10	-	2000
7688	2 1 3	-	-	-	18	370	4300	-	-	-	5	0	2500	25	461	4350	12	0	2610
7728	321	-	-	-	23	480	4000	-	-	-	6	0	3200	-	-	-	-	-	-
7876 7030	231	19	477	5300	19	477	5300 4100	22	320	1920	7	<1	3400	30	365	4821	15	<1	2922
7962	312	21	430	5000	21	430	5000	20	240	2600	10	< 1 0	4000	25 15	480	5170	6	0	2420
7968	1 2 3	22	540	4200	22	540	4200	22	240	1965	11	Ő	2650	28	470	4838	15	0	2598
8019	1 2 3	21	470	4200	21	470	4200	22	310	3700	12	0	2700	25	591	5040	12	0	3640
8068 8260	123	- 22	401	4250	15	400 ⊿01	3500 4250		-	-	8	0	3500	15	370	3700	11	0	2600
8329	3 1 2	22	540	4600	29	540	4600	-	-	-	13	0	3200	25	- 517	- 5070	8	0	- 3180
Mean	·				24	447	4343				12	0	3028	23	512	4916	12	0	3247
CV (%)					12	11	12				17	-	14	13	11	12	15	-	11

values are excluded, as well as other outliers, in the summarizing calculated results at the end of the table. The mean value (Mean) is the square of the mean value for the square root transformed results (mv). The coefficient of variation (CV) is the standard deviation (s) in percentage of the mean value for the square root transformed results. As means to calculate the z-values of your own, the appropriate values of mv and s are given at the end of the table. The x-values are obtained as the square roots of the reported results, respectively. z = (x - mv)/s. $u_{rel,mv}$ is the relative standard uncertainty of mv in per cent. For calculation see the scheme protocol [1]; also briefly described in the text.

Susp	. intesti	nal	Intestin	al enter	ococci	Susp. /	Pseudon	nonas	Pse	eudomoi	nas	Total	plate co	ount	Total	plate co	ount	Lab no.
entero	ococci (MF)		(MF)		aeru	ginosa (MF)	aeru	iginosa	(MF)	22 °	C, 3 day	's [#]	36±2	°C, 2 da	iys [#]	
A	В	С	A	В	C	A	В	С	Α	В	С	A	B 17	C 77	Α	В	С	1121
- 0	730	940	- 0	730	940	-	-	-	-	-	-	53 53	14	67	-	-	-	1131
-	-	-	<1	690	120	-	-	-	5	>2420	41	60	13	47	60	52	56	1237
4100	660	1200	0	660	1200	17	0	160	17	0	160	52	15	63	44	53	61	1254
-	-	-	45	70000	1319	-	-	-	23	<1	164	54	13	78	37	10	69	1290
0	720	1600	0	720	1600	22	0	200	22	0	200	110	288	64	121	335	73	1545
0	810	1300	0	810	1300	22	0	150	22	0	150	54	11	84	48	50	67	1594
3500	743	1465	0	743	1465	16	0	138	16	0	138	51	0 14	60	40	42	47	1011
- 3500		- 1000	-		- 1080	-	-	-	-	-		58	14	68	- 47	43	- 00	1868
0	840	1400	0	840	1400	17	0	180	17	0	180	47	9	49	39	33	56	1970
-	-	-	27	745	1700	-	-	-	13	0	300	56	14	63	45	51	77	2050
7100	670	1370	0	670	1370	18	22	250	18	0	250	64	13	62	57	62	68	2386
<1	880	1400	-	-	-	-	-	-	-	-	-	50	48	64	39	22	45	2637
0	880	970	-1	880	970	10	0	40	10	-1	40	28	4	44 62	38	92 52	60 50	2670
-		-	<1	710	900	-	-	-	-	<1	- 10	40 59	13	58	40	- 52	- 59	2704
-	-	-	-	-	-	-	-	-	-	-	-	76	23	82	-	-	-	3055
-	-	-	<1	770	1210	-	-	-	17	<1	146	63	10	57	48	52	50	3057
-	-	-	-	-	-	-	-	-	13	0	150	63	13	75	48	54	57	3076
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3145
-	-	-	-	-	1150	-	-	-	19	-	-	-	-	-	55	48	57	3155
35	800	1204	0	630 800	1227	14	25	230	14	-1	230	5/	14	75 71	46	5/	61	3162
4	- 000	1200	4	- 300	1200	- 19	25	190	- 19	< I -	190	50	12	42	- 55	- 59	-	3533
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3587
-	-	-	-	-	-	-	-	-	-	-	-	44	11	73	-	-	-	3730
0	810	1490	0	810	1490	23	22	180	23	0	180	46	13	68	62	27	64	3883
5318	797	1320	0	797	1320	-	-	-	-	-	-	52	18	96	-	-	-	4015
-	-	-	-	-	-	-	-	-	-	-	-	30	30	50	-	-	-	4288
150	530 809	1400	36	530 809	1400	22	0	230	12	0	230	20	14	00 7/	50 /1	23	60	4339
0000	730	1180	0	730	1180	21	0	280	21	0	280	53	11	61	54	49	69	4356
-	-	-	-	-	-	-	-		-	-		50	12	62	50	47	67	4459
4500	800	1100	0	718	1100	-	-	-	-	-	-	18	57	65	-	-	-	4723
<10	750	<10	-	-	-	-	-	-	19	<1	180	48	11	65	46	61	59	4817
-	-	-	0	740	3400	-	-	-	20	0	0	50	9	62	46	49	64	4889
0	590 710	1220	0	590 710	1220	24	0	220	24	0	220	51	10	70	58	41	65 65	5018
0	727	1120	-			4	0	30	1	- 0	0	- 52	- 21	- 04	-	- 05	- 05	5220
-			0	640	2400	-	-	-	34	0	170	54	13	76	55	60	56	5352
5200	800	1200	0	800	1200	25	0	220	25	0	220	53	18	62	54	43	64	5447
-	-	-	-	-	-	-	-	-	-	-	-	80	0	80	80	40	70	5494
-	-	-	0	800	1460	-	-	-	13	0	110	55	18	57	47	46	50	5612
760	1070	1470	18	1070	1470	16	19	150	16	0	147	67	14	95	66	60	55	5858
4300	645	1282	<1	645	1282	16	<1	250	10	<1	250	53	43 12	60 64	45	53	60	5950 6175
_	_	_		-	-		-	_		-	-	-	-	-	-	-	-	6182
0	830	1345	0	830	1345	14	0	260	14	0	260	63	13	51	44	50	49	6233
-	-	-	0	680	1400	-	-	-	-	-	-	61	14	68	-	-	-	6253
-	-	-	-	-	-	-	-	-	17	0	400		-	-	50	50	63	6448
-	-	-	4	-	-	- 10	-	100	- 10	-1	-	57	17 4 4	66	56	57	51	6456
3800	745 570	1200	<1	135	948	19	14	123	19	<1	123	35 //R	14	52 76	40	41 65	64 68	6000
-	-	-200		-	-	3	0	91	3	0	- 91	40	-		-	51	5000	6801
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	7191
-	-	-	-	-	-	-	-	-	-	-	-	52	9	75	-	-	-	7248
0	718	1465	0	718	1465	19	0	220	19	0	220	-	-	-	73	53	59	7282
0	695	1130	0	695	1130	17	0	200	17	0	200		-	-	43	31	52	7330
-	-	-	-	-	-	-	-	-	-	-	-	53	12	60	-	-	-	7442
-	-	-		-	- 1500		-	-	- 12	-	-	55 //R	14	57 59	57 68	55 50	62 57	7699
-		- 1000	0	570	1400		-	-	14	0	120	40	14	56	36	40	63	7728
5300	777	1600	<1	777	1600	16	<1	259	16	<1	259	60	12	68	46	48	64	7876
<1	790	1300	<1	790	1300	19	<1	280	19	<1	280	55	13	76	55	47	72	7930
90	880	1350	90	880	1350	19	0	160	-	0	-	51	7	60	42	68	61	7962
0	740	1500	0	740	1500	22	0	190	22	0	190	56	11	60	62	53	54	7968
0	810	129	0	810	129	17	0	173	17	0	173	41	18	64	48	39	68	8019
	-	-	-	710	0001	-	-	-	26	0	180	57 57	13	01 73	62	42	84	8008
5300	995	1460	0	995	1460	-	-	_	15	0	81	65	11	70	49	59	74	8329
			0	737	1343	1			17	0	167	54	13	66	50	49	62	Mean
			- 1	8	8				17	-	23	7	11	9	9	10	6	CV (%)

Lab no.	Sample	Suspe	ected col	iform	Colifor	m bacter	ia (MF)	Susp. th	nermoto	olerant	E.	coli (N	IF)	Colif	orm bac	teria	E. coli	("rapid'	" MPN)
	ABC	Δ	B	<u>,</u>	Δ	в			B B	(INIF)	Δ	в		(12	B	- IN) C	Δ	в	
0200		A	400	0000	A	400	0000	~	ь	U	A 44	<u> </u>	4200	A	550	4000	A 10	<u>ь</u>	2500
8435	2 1 3 3 2 1	24	400	0000	6200	280	3440	10	-	1050	14	0	2500	22	550	4000	10	0	3500
8569	321	29	510	4800	29	510	4800	-	-	- 1050	8	0	2600	26	548	9208	12	0	2420
8626	123	20	440	2960	20	440	0000	14	440	0	14	396	0					-	2420
8628	1 3 2			2000 -	28	350	3700	21	0	0	10	000	Ő	-	-	-	-	-	-
8663	3 1 2	42	500	5400	38	500	5400	19	310	2700	17	Ő	2700	35	390	5500	19	0	2400
8696	1 3 2	-	15400	-	-	15400	-	-	-		-	6200		-	-	-	-	-	
8742	1 3 2	-	-	-	15	460	4000	-	-	-	6	<1	2000	-	-	-	-	-	-
8766	3 1 2	31	309	4800	28	309	4800	29	327	2700	13	0	3400	20	548	5794	10	0	3873
8862	2 1 3	15	491	1400	25	491	4700	-	-	-	10	0	3300	17	650	4198	11	0	2785
8891	1 3 2	-	-	-	19	275	3300	-	-	-	-	-	-	-	-	-	-	-	-
8898	3 1 2	31	564	5454	31	564	5454	-	-	-	12	0	3909	20	544	4610	10	0	3654
8998	3 2 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9002	3 1 2	-	-	-	3100	650	2600	-	-	-	8	0	1900	-	-	-	-	-	-
9051	2 1 3	-	-	-	27	531	3800	-	-	-	16	0	2100	28	485	4090	10	0	2747
9306	1 3 2	-	-	-	-	-	-	-	-	-	-	-	-	26	581	5753	10	0	4195
9408	1 3 2	-	-	-	-	-	-	-	-	-	-	-	-	20	416	4106	9	<1	2909
9436	231	20	464	4300	20	464	4300	26	218	2700	10	0	2900	12	464	3080	6	0	2414
9441	1 3 2	-	-	-	-	-	-	-	-	-	-	-	-	34	400	4500	22	<1	2500
9524	1 3 2	-	-	-	19	480	3900	-	-	-	10	<1	3000	15	441	4950	9	<1	3740
9736	231	-	-	-	-	-	-	-	-	-	-	-	-	17	579	4902	10	0	3635
9899	123	28	1119	5900	28	524	5900	-	470	-	16	0	4100	27	471	4106	15	0	3076
9903	321	21	33Z	2030	27	332	2030	20	470	5250	13	0	4050	-	-	-	-	-	
n		29	20	29	63	64	63	26	26	26	62	63	62	60	50	55	60	60	57
Min		50	101	11	03	04	03	20	20	20	02	03	02	10	240	30	00	00	57
Max		130	15400	6400	6200	15400	6400	33	620	5500	27	6200	5200	36	1780	9208	22	240	6130
mun			.0.00	0.00	0200	10100	0.00	00	020	0000		0200	0200	00		0200		2.0	0.00
Median		26	490	4850	24	477	4328	21	305	2650	12	0	3000	24.5	508.5	4870	12	0	3180
Mean					24	447	4343				12	Ő	3028	23	512	4916	12	0	3247
CV (%)					12	11	12				17	-	14	13	11	12	15	-	11
False po	ositive				0	0	0				0	2	0	0	0	0	0	1	0
False ne	egative				1	1	2				1	0	6	0	0	0	1	0	2
Outliers	, low				1	1	2				0	0	0	0	0	1	0	0	0
Outliers	, high				3	3	0				0	0	0	0	1	0	0	0	0
Low lim	it OK	6	191	44	15	191	1710	6	0	0	5	0	1200*	10	240	2419	6	0	2400
High lim	nit OK	130	15400	6400	41	650	6400	33	620	5500	27	0	5200	36	866	9208	22	0	6130
		-			4 000	04.450	05 000				0.000	0.000	FF 005	4 000	00.004	70 444	0.450	0.000	50.000
mv (1/Moon					4.939	21.153	65.902				3.396	0.000	55.025	4.822	22.621	70.111	3.450	0.000	56.980
(vivieari)				0.569	2 262	7 702				0.569	0.000	7 720	0.629	2 520	0 1 2 2	0 5 2 4	0.000	6 497
5 (C\/*m\//	(100)				0.506	2.303	1.192				0.506	0.000	1.139	0.020	2.550	0.132	0.524	0.000	0.407
	%)				1.5	1.5	1.5				2.1		1.0	17	1.5	16	2.0		1.5
rel,mv (/m /m:->				1.5	1.0	1.0				2.1		1.9	1.7	1.5	1.0	2.0		1.5
(100°S/1	v n _{mv} /mv)																		
x																			
(V Resu	it)																		
∠ ([x-mv]/s	5)																		

cfu/ml
* The calculated results and acceptance limits are calculated without all the deviating result. However, dependent on method, some of the 6 zero results must be judged
as acceptable while others are true false negative results.

Sus	p. intesti	inal	Intestir	hal enter	ococci	Susp. F	seudon	nonas	Pse	udomor	nas	Tota	I plate c	ount	Tota	l plate c	ount	Lab no.
enter	rococci ((MF)		(MF)		aerug	jinosa (MF)	aeru	ginosa	(MF)	22	°C, 3 day	/s [#]	36±2	°C, 2 d	ays [#]	_ '
Α	В	С	<u>A</u>	В	<u> </u>	A	В	С	<u>A</u>	B	<u> </u>	A	<u> </u>	<u> </u>	<u> </u>	В	C	└─── '
0	720	1200	0	720	1200	30	0	220	30	0	220	52	16	69	54	39	72	8380
-	-	4070	U	500	1100	9	U	160	Э	U	- 1	50	1∠ 16	60 j	57	58	51	8430
4100	000	1270	v	000	1270				1 [-	- ,	46	10	00 j /1	38	- 20	52	8626
			50	1200	1500				18	0	170	61	12	58	36	48	72	8628
3200	710	1600	0	710	1600	25	0	220	25	õ	220	68	15	110	46	60	77	8663
-	96400	-	1	96400	-	-			1 -	-		1	2E+05		1	2E+05	,	8696
-	-	-			- '	-	-	- !	-	-	- '	53	17	63	59	49	67	8742
120	655	1342	0	655	1342	21	0	100	21	0	100	46	13	59	44	60	60	8766
5100	964	1509	0	964	1509	-	-	- 1	- 1	-	- '	57	15	73	- 1	-	- '	8862
-	-	-	-	-	- '	-	•	- 1	- 1	-	- '	57	14	67	1 -	-	- '	8891
0	660	1315	0	660	1315	25	0	153	25	0	153	52	15	77	52	51	55	8898
-	-	-	-	-	- 1	-	-	-)	- 1	-	- 1	-	-	- 1	1 -	-	- 1	8998
-	-	1100	U	470		-	•	-)		-		42	14	52	61	-		9002
-			U	800	2000			-)	°	U	90	59 57	13	59 j 75	54	50	63	9001
			-	- 570	1600	14	0	150	14	-	150	51	17	70 J 80	52	40 44	48	9300
118	727	1600	ő	727	1600	16	0	227	16	0	227	53	10	53	55	33	40 69	9436
		-	ž		- 1000	10	-		1 1	-		57	14	78	49	16	68	9441
-	-	-	<1	583	1750	-		- '	l _	-	- '	51	11	58	47	52	60	9524
4182	800	1236	0	800	1236	14	0	191	14	0	191	64	14	57	38	47	67	9736
5800	743	1286	35	743	1286	16	0	177	16	0	177	54	10	72	45	55	69	9899
0	869	1950	0	869	1950	22	0	245	22	0	245	56	15	81	51	57	66	9903
47	48	48	59	61	60	37	37	37	56	55	54	82	83	82	69	71	70	n
7100	530	1050	0	470	120	3	0	30 1	1	0	100	18	0	41	121	0	5000	Min
/100	96400	1950	90	96400	3400	30	25	280 1	34	U	400	TIU	2E+05	110	121	2E+05	5000	Wiax
0	744	1293	0	730	1331	18	0	190	17	0	178.5	54	13	64.5	49	50	63	Median
	144	1200	Ť	737	1343			130	17		167	54	13	66	50	49	62	Mean
			1 :	8	8			,	17	-	23	7	11	9	9	10	6	CV (%)
									(t			1			
			8	0	0			,	0	0	0	0	0	0	0	0	0	False pos.
			0	0	0			,	0	0	2	0	1	0	1	1	1	False neg.
			0	0	2			,	2	0	0	3	1	0	0	3	0	Outliers <
			0	2	2			,	0	0	0	1	6	0	1	3	1	Outliers >
	500	0		170	240		0	20	1 _	0	10	0.5	0		1	00	45	
7100	530	1050	U	470	940 1	3	25	30	5	U	10 1	35	5	41	36	22	45	Low limit
/100	96400	1950	<u> </u>	1200	2000	30	20	200	34		400	00			00	ษย	04	Hign hum
			0.000	27 153	36 641				4 130	0.000	12 931	7 348	3 632	8 115	7 082	6 992	7 880	mv
			0.000	21.100	30.0-1.			,	4.100	0.000	12.00.	1.0.0	0.002	0.115	1.001	0.002	1.000	
			0.000	2.265	3.030				0.714	0.000	3.004	0.502	0.398	0.720	0.637	0.715	0.507	s
					· _ !	1			L _		·!		-	· _ !	1	-	-	1
				1.1	1.1				2.4		3.2	0.8	1.3	1.0	1.1	1.3	0.8	u _{rel,mv} (%)
					,			,	1		•	1		1	1			,
			<u> </u>			t			<u> </u>			<u> </u>		+	<u> </u>			x
					'	1			I		'	1 _		'	1			1
					,						,	<u> </u>		,				z
		1			,	1		,	1		,			1	1			1

Annex B *z*-scores calculated from the laboratory results. Susp. = Suspected on the membrane filters before confirmation. z = (x - mv) / s. *z*-scores are calculated also for outliers (excluding false negative results) in the same way as ordinary *z*-scores. From false

Lab no.	Sample	Suspected coliform	Coliform bacteria	Susp. thermotolerant	E. coli (MF)	Coliform bacteria	E. coli ("rapid" MPN)
	АВС		A B C	A B C	A B C		АВС
1131	1 2 3					-0.922 -0.210 1.007	-1.909 0.000 0.810
1132	3 1 2					0.898 -0.622 -0.742	2.163 0.000 -0.234
1237	213		1.418 0.025 -0.546		0.119 0.000 -0.033	0 123 0 821 -0 844	-1.186 0.000
1290	3 1 2		0.453 4.000 0.064		0.368 0.000 -0.033	0.120 0.021 -0.044	-0.030 0.000 -0.323
1545	213		-0.821 -0.488 1.232		-0.698 0.000 -0.649	-2.643 -0.745 -0.102	-1.909 0.000 0.336
1594	123		-0.821 0.416 0.885		-0.412 0.000 0.643	0.597 0.901 -0.191	0.028 0.000 0.843
1753	132		-0.437 0.973 -0.140		0.119 0.000 0.424	0.442 0.845 1.006	0.808 0.000 -0.717
1868	1 3 2		0.621 0.763 0.526		1.490 0.000 1.935	0.284 2.204 -0.511	-0.549 0.000 1.384
1970	3 1 2		1.418 -0.812 0.708		2.088 0.000 0.750		
2050 2386	231		0.621 1.585 1.729		0.368 0.000 1.842	-0.041 -0.112 -0.172 -0.209 2112 1.361	0.558 0.000 0.597
2637	3 1 2		0.202 0.320 0.017		0.113 0.000 0.040	0.898 -0.282 0.581	1.051 0.000 0.205
2670	321		-4.000 -0.279 -2.184		-1.667 0.000 -0.793	3	
2704	3 1 2		-0.251 0.797		0.119 0.000 2.208	1.608 -0.529 0.331	0.028 0.000 0.466
2745	213		-1.875 1.585 0.247		-1.000 0.000 1.654		
3057	3 2 1		2.577 -1.035 -0.974		3.168 0.000	-1.113 -2.818 -4.000	1.286
3076	123						
3145	231					1.189 0.845 0.222	0.808 0.000 0.268
3162	2 3 1					-0.922 2.691 -0.742	-1.186 0.000 -0.234
3305	231		0.786 0.791 -1.428		0.839 0.000 -0.033	0.123 -0.103 0.074	0.028 0.000 0.466
3533	1 3 2						
3587	312						
3883	3 1 2		-0.821 0.025 0.973		-0.412 0.000 0.199	1.331 0.210 1.863	1.051 0.000 3.286
4015	231					-0.209 4.000 0.288	-0.858 0.000 0.336
4288	3 1 2		0.004 4.000 0.700		0.000 0.000 4.004	4 004 0 050 0 044	0.000 0.000 0.007
4339 4343	132		0.621 1.063 0.708		0.839 0.000 -1.331	1.331 -0.650 -0.014	0.808 0.000 -0.627
4356	231		0.786 0.882 -0.341		1.894 0.000 -0.780	0.442 0.046 -1.606	0.298 0.000 -1.202
4459	321					1.877 -1.166	0.000 -1.200
4723	2 1 3		4 004 0 400 0 044			0.123 -0.455 1.283	-0.549 0.000 1.094
4817	231 213		-0.251 -1.622 -0.443		-0 140 0 000 -0 521	-0 737 -1 547 -0 942	0.558 0.000 -1.232
5018	2 1 3		1.720 0.791 -2.515		1.490 0.000	-0.922 0.312 -0.067	-0.254 0.000 -1.200
5094	3 1 2		-0.626 -0.922 -3.151		-1.667 0.000 -2.634		
5220 5352	312		-0.070 -0.594 0.617		0.608 0.000 -0.033	-0.209 0.046	-0.254 0.000
5447	3 1 2		-0.070 0.416 0.055		0.119 0.000 -0.000		
5494	2 1 3		-4.000 -4.000				
5612	321		0.282 0.320		0.368 0.000	-0.737 -1.653 0.331	-0.254 0.000 0.466
5858 5950	1 2 3 3 2 1		0.786 0.846 -0.757		-0.412 0.000 -0.396	0.284 0.980 -1.203 -0.737 0.570 -2.573	0.298 0.000 -0.759
6175	3 1 2					-0.209	-1.186 0.000
6182	1 2 3						
6233 6253	213		-1.651 -0.383 0.247		-1.000 0.000 0.643	1.044 0.252 -0.742	1.736 0.000 -0.234
6448	321		0.948 0.605 -0.443		-0.412 0.000 -0.649	-0.337 -1.033 1.007	-0.204 0.000 1.207
6456	123		-0.070 0.125 0.526		-1.321 0.000 0.313	-1.720 1.290 0.824	-1.186 0.000 -0.774
6563	321		0.108 -3.103 1.060		0.839 0.000 1.461	0.284 0.176 1.139	0.028 0.000 0.685
6801	3 2 1 2 1 3		-1 435 4.000 -4.000		0.000	0.012 -0.557	0.808 0.000
7191	231				0.000		
7248	123		4.000 -1.745 1.809		-0.698 0.000 0.199	0.442 0.845 0.331	1.051 0.000 0.018
7282	123				0.839 0.000 -0.194		
7442	132		0.108 0.809 -0.015		0.119 0.000 -0.054	0.123 1.035 -1.519	1.051 0.000 -0.841
7564	321		1.720 0.416 -0.341		0.608 0.000 -0.780		
7688	213		-1.224 -0.812 -0.042		-2.042 0.000 -0.649	0.284 -0.455 -0.511	0.028 0.000 -0.908
7876	3 2 1 2 3 1		-0.201 0.320 -0.341			1044 -1390 -0.083	0.808 0.000 -0.451
7930	1 3 2		-0.626 -0.176 -0.240		-0.412 0.000 0.084	0.284 -0.282 0.498	1.051 0.000 0.336
7962	312		0.453 0.223 0.617		1.063 0.000 1.062	-1.511 -0.210 0.220	-1.909 0.000 -1.200
7968	123		-0.437 0.882 -0.140		-0.140 0.000 -0.458	0.749 -0.372 -0.068	0.808 0.000 -0.926
8068	1 2 3		-0.020 0.223 -0.140		-1.000 0.000 0.534	-1.511 -1.338 -1.142	-0.254 0.000 -0.923
8260	1 3 2		-0.437 0.425 -0.091		-0.140 0.000 -0.458		
8329	3 1 2		0.786 0.882 0.247		0.368 0.000 0.199	0.284 0.046 0.134	-1.186 0.000 -0.091
8380 8435	213		-0.070 0.125 1.483		0.608 0.000 1.264	-0.209 0.329 -0.102	-0.549 0.000 0.336
8569	3 2 1		0.786 0.605 0.434		-1.000 0.000 -0.521	0.442 0.312 3.178	0.028 0.000 -1.200
8626	1 2 3		-0.821 -0.075		0.608		
8628	132		0.621 -1.035 -0.651		-0.412 0.000	1742 1420 0400	1 736 0 000 4 000
8696	132		4.000		1.219 0.000 -0.396	1.143 -1.130 0.498	1.730 0.000 -1.232
8742	1 3 2		-1.875 0.125 -0.341		-1.667 0.000 -1.331		
8766	312		0.621 -1.513 0.434		0.368 0.000 0.424	-0.557 0.312 0.739	-0.549 0.000 0.810
8862	2 1 3		0.108 0.425 0.341		-0.412 0.000 0.313	-1.113 1.136 -0.654	-0.254 0.000 -0.649
8898	3 1 2		1.107 1.098 1.020		0.119 0.000 0.960	-0.557 0.278 -0.272	-0.549 0.000 0.535
8998	3 2 1					5.00. 0.210 0.212	2.0.0 0.000 0.000

positive results can no z-scores be calculated. z-scores from outliers are not real zscores but a practical means to express also the results from the outliers. Very low and high values are here limited to -4 and +4, respectively.

Susp. intestinal	Intestinal enterococci	Susp. Pseudomonas	Pse	udomonas ninosa (ME	=)	Total plate	count	Total	plate co	ount	Lab no.
		A B C	Aeru	B (с, С	A B	C C	30±2	B B	ays C	
						0.136 1.236	0.917		_	-	1131
	0.000 -0.060 -1.975					-0.135 0.276	0.098				1132
	0.000 -0.391 -4.000		-2.654	-2.1	173	0.792 -0.066	-1.749	1.043	0.307	-0.783	1237
	0.000 -0.646 -0.660		-0.010	0.000 -0.0	094	-0.273 0.606	-0.247	-0.705	0.403	-0.138	1254
	4.000 -0.107		0.933	0.000 -0.0	042 403		-0.160	-1.569	-4.000	0.841	1290
	0.000 0.577 -0.193		0.786	0.000 -0.2	228	0.001 -0.793	1.458	-0.241	0.111	0.602	1594
	0.000 0.046 0.539		-0.182	0.000 -0.3	394	-0.411 -2.974	0.182	-0.471	-0.715	-2.021	1611
	0.000 0.263 -1.247		-2.355	0.000 -1.3	383	0.001 0.276	-0.513	-0.355	-0.397	0.481	1753
						0.533 -1.181	0.182				1868
	0.000 0.808 0.256		-0.010	0.000 0.1	162	-0.980 -1.589	-1.548	-1.315	-1.745	-0.783	1970
	0.000 -0.560 0.123		0.158	0.000 0.9	959	1.298 -0.066	-0.335	0.735	1.234	0.722	2386
	0.000 0.000 0.120		0.100	0.000 0.0	000	-0.551 4.000	-0.160	-1.315	-3.219	-2.312	2637
	0.000 1.109 -1.814		-1.356	0.000 <mark>-2.</mark> ′	199	-4.000 -4.000	-2.058	-1.441	3.636	-0.265	2670
	0.000 -0.224 -1.867		-2.080	0.000 -3.2	252	-1.126 -0.793	-0.335	-1.190	0.307	-0.393	2704
						0.663 -0.066	-0.693				2/45
	0.000 0.263 -0.613		-0.010	0.000 -0 2	282	1 173 -1 181	-0.785	-0 241	0.307	-1 596	3055
	0.000 0.200 0.010		-0.735	0.000 -0.2	228	1.173 -0.066	0.757	-0.241	0.499	-0.652	3076
					-			-			3145
	-0.901		0.321					0.525	-0.089	-0.652	3155
	0.000 -0.907 -0.532		-0.544	0.000 0.7	744	0.402 0.276	0.757	-0.471	0.780	0.481	3162
	0.499 -0.660		0.321	0.000 0.2	284	0.792 -0.066	0.6//	0.525	0.964	-0.138	3305
						-0.551 -0.422	-2.210				3587
						-1.423 -0.793	0.596				3730
	0.000 0.577 0.647		0.933	0.000 0.1	162	-1.126 -0.066	0.182	1.244	-2.512	0.236	3883
	0.000 0.476 -0.102					-0.273 1.536	2.337				4015
	0.000 1.924 0.256		0.796	0.000 0.7	744	-3.724 4.000	-1.450	0.621	0 402	1 077	4288
	0.000 -1.824 0.230		-0.933	0.000 -1 :	309	-1 274 0 606	0.102	-1.066	-0.397	-0.265	4343
	0.000 -0.060 -0.756		0.634	0.000 1.2	266	-0.135 -0.793	-0.423	0.419	0.011	0.841	4356
						-0.551 -0.422	-0.335	-0.017	-0.191	0.602	4459
	0.000 -0.158 -1.147					-4.000 4.000	-0.073				4723
	0.000 0.000 4.000		0.321	0.000 0.1	162	-0.836 -0.793	-0.073	-0.471	1.145	-0.393	4817
	0.000 0.022 4.000		0.480	0.000 0.6	633	-0.551 -1.589	-0.335	0.839	-0.824	0.230	4009
	0.000 -0.224 -0.999		1.070	0.000 0.0	000	-0.273 2.391	-0.160	0.094	1.839	0.359	5094
			-4.000	0.000							5220
	0.000 -0.819 4.000		2.384	0.000 0.0	036	0.001 -0.066	0.837	0.525	1.055	-0.783	5352
	0.000 0.499 -0.660		1.219	0.000 0.6	633	-0.135 1.536	-0.335	0.419	-0.608	0.236	5447
	0.000 0.499 0.518		-0 735	0.000 -0.8	813	0.136 1.536	-0.785	-0.355	-0.934	-1 596	5612
	2.454 0.561		-0.182	0.000 -0.2	269	1.666 0.276	2.266	1.637	1.055	-0.916	5858
	0.000 -0.776 -0.276		-0.182	0.000 0.9	959	-2.518 4.000	-0.073	-0.587	-4.000	0.602	5950
						-0.135 -0.422	-0.160	-0.705	0.403	-0.265	6175
	0.000 0.721 0.011		0 5 4 4	0.000 1.0	062	1 172 0 066	1 252	0 705	0 1 1 1	1 707	6182
	0.000 -0.475 0.256		-0.344	0.000 1.0	003	0.920 0.276	0.182	-0.705	0.111	-1.757	6253
			-0.010	0.000 2.3	353			-0.017	0.111	0.112	6448
						0.402 1.236	0.013	0.631	0.780	-1.458	6456
	0.000 -0.019 -1.932		0.321	0.000 -0.6	613	-2.850 0.276	-1.255	-1.190	-0.824	0.236	6563
			-3 360	0.000 -1 -	120	-0.030 -0.066	0.037	2.112	1.497 0.200	4,000	0000 6801
			0.000	5.000 -1.	. 20				0.200	4.000	7191
						-0.273 -1.589	0.757				7248
	0.000 -0.158 0.539		0.321	0.000 0.0	633			2.297	0.403	-0.393	7282
	0.000 -0.349 -0.999		-0.010	0.000 0.4	403	0 125 0 400	0 512	-0.824	-1.992	-1.320	7330
						0.135 -0.422	-0.785	0.735	0.593	-0.013	7442
	-0.391 0.689		-0.933	0.000 -0.4	466	-0.836 -0.066	-0.693	1.829	0.964	-1.049	7688
	0.000 -1.448 0.256		-0.544	0.000 -0.6	658	-1.274 0.276	-0.877	-1.699	-0.934	0.112	7728
	0.000 0.319 1.109		-0.182	0.000 1.0	053	0.792 -0.422	0.182	-0.471	-0.089	0.236	7876
	0.000 0.421 -0.193		0.321	0.000 1.2	266	0.136 -0.066	0.837	0.525	-0.191	1.193	7930
	0.000 0.022 0.689		0 786	0.000 0 3	284	-0.411 -2.460 0.269 -0.793	-0.513	-0.944 1 244	0.403	-0.138	7962
	0.000 0.577 -4.000		-0.010	0.000 0.0	074	-1.881 1.536	-0.160	-0.241	-1.045	0.722	8019
	0.000 -0.224 0.689		1.358	0.000 0.1	162	0.402 -0.066	-0.423	1.244	-0.715	2.534	8068
	0.000 4.000 0.515		0.000	0.000		0.402 0.606	0.596	0.405	0.001	4 40 -	8260
	0.000 -0.142 -0.660		-0.360	0.000 -1.3	309 633	1.421 -0.793	0.349	-0.129	0.964	1.424	8329
	0.000 -0.142 -0.000		-1.583	0.000 0.0	000	-0.551 -0.422	-0.513	0.419	0.873	-1.458	8435
	0.000 -0.732 -0.332					0.269 0.926	1.152				8569
						-1.126 -1.181	-2.377	-1.441	-2.247	-1.320	8626
	3.306 0.689		0.158	0.000 0.0	036	0.920 -0.422	-0.693	-1.699	-0.089	1.193	8628
	0.000 -0.224 1.109		1.219	0.000 0.6	033	1.788 0.606	3.296	-0.471	1.055	1.765	8663
	4.000					-0.135 1 236	-0.247	0.941	0.011	0.602	8742
	0.000 -0.689 -0.003		0.634	0.000 -0.9	976	-1.126 -0.066	-0.603	-0.705	1.055	-0.265	8766
	0.000 1.720 0.728					0.402 0.606	0.596				8862
			1.010	0.000 5	407	0.402 0.276	0.098	0.000	0.000	0.010	8891
	0.000 -0.646 -0.125		1.219	0.000 -0.4	10/	-0.273 0.606	0.917	0.203	0.209	-0.916	8898 8998

Lab no.	. Sample Suspected colifo bacteria (MF)			oliform	Colif	orm bao	teria	Susp.	thermo	otolerant	E.	coli (M	IF)	Colif	orm bad	cteria	E. coli	("rapid	" MPN)	
			bacte	ria (I	MF)		(MF)		colife	orm ba	ct. (MF)				("ra	apid" M	PN)			
	ABC	;	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С
9002	3 1 2	2				4.000	1.837	-1.914				-1.000	0.000	-1.478						
9051	213	3				0.453	0.800	-0.546				1.063	0.000	-1.189	0.749	-0.237	-0.757	-0.549	0.000	-0.704
9306	1 3 2	2													0.442	0.586	0.706	-0.549	0.000	1.201
9408	1 3 2	2													-0.557	-0.880	-0.742	-0.858	0.000	-0.469
9436	231	1				-0.821	0.164	-0.042				-0.412	0.000	-0.152	-2.162	-0.427	-1.797	-1.909	0.000	-1.210
9441	1 3 2	2													1.608	-1.036	-0.373	2.369	0.000	-1.076
9524	1 3 2	2				-1.020	0.320	-0.443				-0.412	0.000	-0.033	-1.511	-0.641	0.030	-0.858	0.000	0.644
9736	231	1													-1.113	0.570	-0.012	-0.549	0.000	0.510
9899	1 2 3	3				0.621	0.735	1.400				1.063	0.000	1.164	0.597	-0.363	-0.742	0.808	0.000	-0.234
9903	321	1				0.453	-1.241	1.177				0.368	0.000	1.113						
n			0	0	0	62	63	61	0	() 0	61	61	56	60	59	55	59	59	55
Min						-4.000	-4.000	-4.000				-2.042	0.000	-2.634	-2.643	-2.818	-4.000	-1.909	0.000	-1.232
Max						4.000	4.000	1.809				3.168	0.000	2.208	1.877	4.000	3.178	2.369	0.000	3.286
Median						0.019	0.320	-0.042				0.119	0.000	-0.033	0.204	0.046	-0.067	0.028	0.000	-0.091
Mean						0.129	0.127	-0.131				0.000	0.000	0.000	0.000	0.068	-0.073	0.000	0.000	0.000
SD						1.402	1.397	1.218				1.000	0.000	1.000	1.000	1.120	1.128	1.000	0.000	1.000
2						4	2	2				0	0	0	0	0	4	0	0	0
Z<-3						1	2	3				0	0	0	0	0	1	0	0	0
-35Z<-2						0	1	2				1	0	2	2	1	1	0	0	0
2 <z≤3< th=""><th></th><th></th><th></th><th></th><th></th><th>2</th><th>0</th><th>0</th><th></th><th></th><th></th><th>1</th><th>0</th><th>1</th><th>0</th><th>3</th><th>0</th><th>2</th><th>0</th><th>1</th></z≤3<>						2	0	0				1	0	1	0	3	0	2	0	1
z>3						3	3	0				1	0	0	0	1	1	0	0	1

Su	sp. inte	stinal	Intesti	nal ente	rococci	Susp	. Pseuc	lomonas a (MF)	Pse	udomo ainosa	nas (MF)	Tota	l plate o °C 3 d	ount	Tota	l plate c 2°C 2 c	ount	Lab no.
A	B	C	Α	B	С	A	B	C	A	B	<u>c</u>	A	B	<u>с</u>	A	B	C	
			0.000	-2.417								-1.726	0.276	-1.255				9002
			0.000	0.499	2.667				-1.824	0.000	-1.009	0.663	-0.066	-0.603	1.144	0.111	-0.138	9051
												0.402	1.236	0.757	0.419	-0.293	0.112	9306
			0.000	-1.448	1.109				-0.544	0.000	-0.228	-0.411	1.236	1.832	0.203	-0.502	-1.878	9408
			0.000	-0.084	1.109				-0.182	0.000	0.711	-0.135	-1.181	-1.159	0.525	-1.745	0.841	9436
												0.402	0.276	0.995	-0.129	-4.000	0.722	9441
			0.000	-1.328	1.714							-0.411	-0.793	-0.693	-0.355	0.307	-0.265	9524
			0.000	0.499	-0.490				-0.544	0.000	0.296	1.298	0.276	-0.785	-1.441	-0.191	0.602	9736
				0.046	-0.258				-0.182	0.000	0.124	0.001	-1.181	0.514	-0.587	0.593	0.841	9899
			0.000	1.027	2.481				0.786	0.000	0.906	0.269	0.606	1.229	0.094	0.780	0.481	9903
							-											
0) () O	51	61	60	()	0 0	56	55	52	82	82	82	68	70	69	n
			0.000	-2.417	-4.000				-4.000	0.000	-3.252	-4.000	-4.000	-2.377	-1.699	-4.000	-2.312	Min
			0.000	4.000	4.000				2.384	0.000	2.353	4.000	4.000	3.296	4.000	4.000	4.000	Max
			0.000	0.040	0.050				0.040	0.000	0 4 40	0.007	0.000	0 4 4 7	0.400	0.444	0.440	Ma dian
			0.000	-0.019	-0.052				-0.010	0.000	0.143	-0.067	-0.066	-0.117	-0.129	0.111	0.112	wedian
			0.000	1 210	1 420				-0.131	0.000	1.000	-0.094	1 405	1.000	0.059	-0.005	1 102	wean
			0.000	1.210	1.420				1.201	0.000	1.000	1.300	1.495	1.000	1.105	1.505	1.105	Summa
			0	0	2				2	0	1	3	1	0	0	1	0	<u>3uiiiiia</u> 20
			0	2	2				2	0	2	2	2	3	0	2	2	20
			0	2	2				1	0	2	1	2	2	3	2	2	20
			0	3	2				0	0	0	2	6	1	1	3	1	29

Annex C – photos

Something went wrong with the extra plate for photographing. Almost nothing appeard after 2 days of incubation. If possible a photo will be added later.

1 ml, 2 days

m-Pseudomonas CN Agar, 37 °C

Bile Esculin Azide Agar, 44 °C

2 hours (from beneath)

10 ml

merendenas CN Agar, 37 °C

100 ml, 2 days

10 ml, 2 days

10 ml, 2 days

10 ml, 2 days from beneath)

m-Pseudomonas CN Agar, 37 °C

PT reports published 2017

Proficiency Testing – Food Microbiology, January 2017, by Jonas Ilbäck

Proficiency Testing – Drinking Water Microbiology, March 2017, by Tommy Šlapokas

Proficiency Testing - Food Microbiology, April 2017, by Jonas Ilbäck

Proficiency Testing – Drinking Water Microbiology, September 2017, by Tommy Šlapokas

Proficiency Testing - Food Microbiology, October 2017, by Jonas Ilbäck

PT reports published 2018

Proficiency Testing - Food Microbiology, January 2018, by Jonas Ilbäck

Proficiency Testing – Drinking Water Microbiology, March 2018, by Tommy Šlapokas

Proficiency Testing - Food Microbiology, April 2018, by Jonas Ilbäck

Internal and external control for microbiological analyses of food and drinking water

All analytical activities require work of a high standard that is accurately documented. For this purpose, most laboratories carry out some form of internal quality assurance, but their analytical work also has to be evaluated by an independent party. Such external quality control of laboratory competence is commonly required by accreditation bodies and can be done by taking part in proficiency testing (PT).

In a proficiency test, identical test material is analysed by a number of laboratories using their routine methods. The laboratories report their results to the organiser that evaluates them and compiles them in a report.

The National Food Agency's PT program offers

- > External and independent evaluation of laboratories analytical competence.
- Improved knowledge of analytical methods with respect to various types of organisms.
- Expert support.
- > Tool for inspections regarding accreditation.
- Free extra material for follow-up analyses

For more information visit our website: https://www2.slv.se/absint

The National Food Agency's reference material

As a complement to the proficiency testing but without specific accreditation, National Food Agency also produces reference material (RM) for internal quality control: a total of 8 RM for food and drinking water microbiological analyses, including pathogens, are available.

Information available on our website: https://www.livsmedelsverket.se/en/RM-micro